AACR Special Conference in Cancer Research EXPANDING AND TRANSLATING CANCER SYNTHETIC VULNERABILITIES

June 10-13, 2024 | Doubletree by Hilton Montreal | Montreal, Quebec, Canada

American Association for Cancer Research*

Targeting genome instability in cancer: Inhibition of Pol

Michael Zinda Repare Therapeutics Montreal, Quebec and Cambridge, MA

Michael Zinda

I have the following relevant financial relationships to disclose: Employee of: **Repare Therapeutics** Stockholder in: **Repare Therapeutics**

Pole Background

- Unique, multifunctional DNA polymerase with ATP-dependent DNA helicase activity
- Central to microhomology-mediated end joining (MMEJ), a key mechanism of doublestrand DNA break repair
- Uniquely active to repair double-strand DNA breaks during mitosis
- Minimally expressed in normal tissue and knockout animals are viable, fertile and exhibit some level of genome instability

MMEJ (Polθ) genomic signatures in BRCA/HRD tumors

AACER American Association for Cancer Research

Polθ promotes survival of BRCA deficient cells

PolQ deficiency synthetic with: ATM (Shima et al. 2004) 53BP1 (Wyatt et al. 2016) Ku70/80 (Wyatt et al. 2016)

Mateos-Gomez et al. 2015 (HCC1937 cells) Similar results in FANCD2 model *(Ceccaldi et al. 2015)*

Helicase and polymerase domains are both essential for Polθ cellular activity

AACER American Association for Cancer Research[®]

 Knock-in of helicase or polymerase dead mutations equivalently impair MMEJ repair of an engineered DSB

Protein structures enabled discovery of polymerase and helicase inhibitors

 We generated potent and selective Polθ inhibitors against both the helicase and polymerase (requires co-crystals with DNA) domains

Chemogenomic screens reveal equivalent effects of Helicase and Polymerase inhibitors

 Polθ polymerase and Helicase inhibitors reveal identical SL interactions in chemogenomic screens – both domains appear to be equivalent

Repare Polθ helicase inhibitors demonstrate superior cell potency

 Helicase inhibitors demonstrated 100-1000X fold better cellular potency than could be achieved with polymerase-class inhibitors

Analysis of DNA synthesis in real time at the single-molecule level reveals low processivity

- Gap-filling DNA synthesis from annealed microhomology involves multiple cycles of Polθ binding and release
- Short duration of DNA binding may explain the weak potency of inhibitors acting only on DNA bound Polθ

RP-3467: A Highly potent, selective and orally bioavailable Polθ helicase inhibitor

	Polθ ATPase Enzyme IC ₅₀	<0.25 nM
o	CETSA cellular target engagement IC ₅₀	5 nM
vitr	Cell proliferation DLD1 / HCT116 (BRCA2mt) EC ₅₀	4 / 7 nM
드	Off-target ATPase (HELQ, WRN, BLM) IC ₅₀	> 10 µM
	Off-target Polθ polymerase domain IC ₅₀	> 100 µM
	Human Hepatocyte Clearance (ul /min/10 ⁶ cells)	2.1
ME	Rat PK (%E. t _{vo})	 90% 13h
AD	Monkev PK (%F. $t_{1/2}$)	60%, 3h

Clean on PanLabs safety pharmacology screen

Inhibits DNA repair and is synthetic lethal with BRCA2 loss

- Demonstrates potent in vitro cellular target engagement and activity
- Huge synthetic lethal window no effect on BRCA2 WT cells

RP-3467 induces micronuclei in **BRCA2-/- cells**

Pol θ inhibition induces micronuclei formation in HRD cells

5-

0.00001

Micronuclei formation are a biomarker for Pol θ inhibition

AACR SPECIAL CONFERENCE IN CANCER RESEARCH: EXPANDING AND TRANSLATING CANCER SYNTHETIC VULNERABILITIES

◆ DLD1 WT

--

0.01

[RP-3467] (µM)

0.0001 0.001

DLD1 BRCA2-/-

 $IC_{50} = 2nM$

Ò

Monotherapy activity against BRCA2 -/tumors

Monotherapy tumor growth suppression at a well-tolerated dose of RP-3467

Rationale for synergy between Pol0i and PARPi

AACER American Association for Cancer Research[®]

 PARPi + Pol0i combination synergizes to kill homologous recombination deficient tumor cells

RP-3467 drives complete regressions in combo with full-dose olaparib

 Complete regressions with high and low dose Olaparib suggest that RP-3467 will allow PARPi dose reductions

RP-3467 does not potentiate PARPi in BRCA WT cells

Lack of effect in HR competent cells supports safety in normal tissues

Profound, durable synergy with PARP1/2 inhibition

 Deep/durable complete regressions across a wide dose range and extremely well tolerated

No added hematological toxicity in combination over PARP1/2i alone

5 weeks co-administration of human clinical PK equivalent dose of olaparib with RP-3467 up to 10mg/kg in CD1 mice

Extremely well tolerated combination at relevant olaparib doses

Synergy with PARPi combinations across BRCA2 null PDX models

AACHR American Association for Cancer Research[®]

Complete/partial regression in BRCA2 null PDX models

Synergy with PARP1i combinations in a PALB2 null PDX model

Partial regression in a PALB2 null PDX models

Synergy with PARPi combinations across BRCA1 null PDX models

AACHR American Association for Cancer Research[®]

Complete/partial regression in BRCA1 null PDX models

Mechanisms of resistance to PARPi

53BP1/Shieldin Loss: A potential mechanism of PARPi resistance

RIF1

53BP1

Shieldin `

SHLD1

SHLD3

Noordermeer et al. (2018) Nature

AACHR American Association for Cancer Research[®]

Loss of components of the 53BP1 pathway results in PARPi resistance

, NHEJ

nucleases

3

Polθi is active in PARPi resistant PDX model

 PARPi + Pol0i synergize in tumors with alterations of the Shieldin complex (a mechanism of PARPi resistance)

Durable synergy with PARPi inhibition in a BRCA1 null CDX

 RP-3467 and olaparib co-treatment results in tumor regressions in a BRCA1 deficient model

Tumors regrowing on Olaparib are sensitive to RP-3467 + PARPi combo

 Tumors that escape single-agent therapy can be successfully retreated with the combination

 Phase 1 clinical trial initiation expected in 2H 2024

 Primary Goal: PK, safety and recommended Phase 2 dose **Synthetic lethal opportunity** – homologous recombination deficient (HRD) genetic alterations

Exciting combination opportunity – $Pol\theta$ inhibition is extremely well tolerated preclinically, with no expected overlapping toxicities

PARPi combinations – Upfront in HRD driven prostate, ovarian, breast and pancreatic cancer, innate/acquired PARPi resistance

Radioligand Therapy (RLT) – Potential for <u>unselected</u> RLT combinations and external beam irradiation

Chemotherapy/ADCs – Combinations with dsDNA break inducing chemo therapies (e.g. first line ovarian (CarboTaxol), ADC therapies with topoisomerase payloads)

Agnel Sfeir Anne Roulston Artur Veloso Banruo Li Bingcan Liu Bita I otfollahzadeh – Barzili Cameron Black Chris Fiore Cynthia Bernier Danielle Henry David Bendahan Fisha Jain

Evelyne Dietrich Frank Sicheri Gino Ferraro Helen Burston Hyeyeon Kim Jesse Leblanc Jessica Desjardins Jordan Young Julian Bowlan Marie-Eve Leclaire Michal 7immermann Michel Gallant

Mike Zinda Pavel Mader Philippe Mochirian **Robert Houle** Robert Papp Sara Fournier Shou Yun Yin Simon Surprenant **Stephen Morris** Yael Mammane